
Dynamic Development Support for Highly Concurrent
Programs in the Ohua Data Flow Engine

Sebastian Ertel
University of Technology, Dresden

Dresden, Germany
sebastian.ertel@tu-dresden.de

Michael J. Beckerle
Waltham, MA, USA

michael.beckerle@alum.mit.edu

ABSTRACT
Most programs that require the full capability of multi-core
architectures in order to achieve scalability address very
challenging tasks. In the era of cloud computing, web tech-
nologies and big data these programs are often required to
be online 24/7. Nevertheless, these programs need to be en-
hanced with new features or might have bugs to be fixed.
Hence, a runtime system is required that allows for dy-
namic development without halting the executing program.
While famous scripting languages like Python or JavaScript
already provide such a feature, these languages were not de-
signed for highly concurrent programming.

Introducing dynamic development into a highly concur-
rent runtime system is a challenging task that we address in
this paper. We present our dataflow-based execution engine,
Ohua, as a promising approach to write and execute highly
concurrent programs for the future multi-core era. Further-
more, we extend the principles of flow-based programming
in order to create a runtime extension framework that, due
to the dataflow abstractions, enables an easy incorporation
of new runtime features such as dynamic development into
the engine.

1. INTRODUCTION
The dawn of the multi-core era introduced the notion of

parallel program execution where many processes or threads
try to solve one global problem. Synchronization techniques
such as locks or transactional memory are meant to help
programmers to turn sequential programs into bug free and
highly concurrent scalable versions. The future in micro pro-
cessor design[8] predicts a further increase in the number of
cores and therewith concurrency. And while concurrent pro-
gramming itself remains extremely challenging, even more
difficult in this context seems dynamic program evolution.

1.1 Dynamic Development
Most of today’s programs are not designed to be one-time

executables. In the era of big data and cloud computing,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LaME’13 July, 1st 2013, Montpellier, France.
.

Accept Read Parse Load Write Reply

Figure 1: Basic data flow for a simple HTTP server.

most programs are meant to run for a long time. Consider
the example of a web server depicted by the data flow graph
in Figure 1. Inarguably, a web server is one of the most
common programs with very high concurrency demands to
service concurrent requests and the requirement to provide
continuous service 24/7. Nevertheless even such a program
has to grow with new features, optimizations or might have
bugs that require fixing. For instance, the famous Apache
web server[1] is widely used in highly concurrent settings ser-
vicing thousands of requests per second but for every recon-
figuration or activation of a new feature (module) it needs
to be gracefully1 shut down and restarted. Restarts unnec-
essarily may lose computational state or persistent connec-
tions, penalize request latency and throughput which ulti-
mately translate into customer dissatisfaction. Hence, an
execution environment that allows a developer to grow and
change programs online without imposing large overheads is
highly desirable.

1.1.1 Problem Definition
Exchanging and altering an executing program is a chal-

lenging task which mainly concerns preserving program cor-
rectness[21]. In [12], the authors identify three problems for
object(/component)-based systems: referential transparency,
state transfer and mutual references. For a concurrent shared
memory program, we add the consistency problem. While
the referential transparency problem addresses the refer-
ences to the component which is to be updated, the consis-
tency problem concerns the aspect of understanding which
execution unit (thread/process) accesses this object at the
time of an update. Finding these interactions without pro-
gram knowledge resembles into implicit parallel program ex-
ecution which is known to be hard. On the other hand,
protecting every object access via locks is expensive.

1.2 FBP To The Rescue
A closer look at future microprocessor architecture re-

veals that their design starts to look more and more like
the ”old” data flow machines from the 1970s and 1980s that
were introduced by massive parallel processing pioneers such

1Child processes are shutdown only when they have finished
handling all their current requests and restarted by the par-
ent process immediately.

as Arvind, Culler[5] and Dennis[9]. The according data
flow languages and the concept of flow-based programming
(FBP)[20] compose programs out of small independent func-
tional blocks, called operators, into a directed graph that
describes the data flow of information packets between op-
erators explicitly via message-passing. Hence, it provides
the missing information required to solve the above consis-
tency problem. FBP can be found at the core of most of the
advanced data processing systems today where parallel and
concurrent processing is key for scalability. For example,
IBM’s DataStage and InfoSphere products[17, 16] are state-
of-the-art systems for data integration that are purely based
on the FBP concepts. Database systems[10, 13] as well as
the adjunct field of data stream processing[6, 3] also describe
their algorithms in a directed graph like structure. The
declarative design of network protocols such as for instance
described in the Overlog system[19] are data flow graphs
by definition. The NoFlo framework [2] is a JavaScript im-
plementation of FBP for easy construction of backend web
services and even the construction of highly scalable web
services[25] comes back to the basic FBP principles.

1.3 Contributions
In the spirit of the new multi-core era, we take the oppor-

tunity for innovative thoughts in the programming language
community[8] and consider FBP as the most promising con-
cept to build highly scalable concurrent programs sequen-
tially with a clear separation of concern between algorithm
and functionality. Our data flow engine Ohua strictly ad-
heres to the FBP principles and extends them such that the
implementation of new runtime features like online operator
reconfiguration or exchange to enable dynamic development
become as straight forward as writing new operators. In
detail, we contribute:

1. A generic extension concept for FBP operators that
allows Ohua to mixin new functionality into existing
and future operators.

2. A runtime extension framework based on FBP princi-
ples that allows Ohua to compose new runtime features
for any data flow graph.

3. The implementation of an online reconfiguration al-
gorithm that allows to update or exchange operators
dynamically during execution.

Since all of these extensions are implemented by taking the
FBP principles by heart, a new runtime feature in Ohua is
composed purely of sequential code and makes no assump-
tions on the execution context.

1.4 Outline
The rest of the paper starts with a brief introduction to

the core principles of FBP and their implementation in our
Ohua data flow engine. Afterwards, Section 4 presents our
advanced FBP concept and the resulting runtime extension
framework. Afterwards, we use this framework to build our
online reconfiguration runtime feature. Related work is pre-
sented in Section 6, before we conclude.

2. FBP ESSENTIALS
This section introduces the basic abstractions and key in-

sights that are necessary in order to follow the construction

of the runtime extension framework in Ohua. For a thorough
review on FBP, we refer the interested reader to [20].

2.1 Concepts
In flow-based programming, an algorithm is described in a

directed acyclic2 data flow graph where the edges are referred
to as arcs and vertices are referred to as operators. Data
travels in small packets in FIFO order through the arcs. An
operator defines one or more input and output ports. Each
input port is the target of a single arc while on the other
hand an output port can be the source of multiple arcs. The
operator algorithm continuously retrieves data one packet at
a time from one of its input ports and emits (intermediate)
results to its output ports. The output port broadcasts the
data packets to all of its outgoing arcs. Finally, an operator
is context-free. That is, it neither makes any assumptions
nor possess any knowledge about its upstream (preceding)
or downstream (succeeding) neighbours. This basically re-
sembles the concept of a library and therewith the operator
concept inherits the benefit of high reusability.

2.2 Key Strength
Apart from the high reusability of operators in the con-

struction of the flow graph algorithms, the major strength
of FBP resides in the abstraction of the flow graph itself. In
essence, the arcs of the graph define the data dependencies
between the operators explicitly rather than implicitly. The
concept of implicit data access (i.e. shared memory), which
causes many problems in today’s system design such as lost
updates, mutual exclusion, deadlocks etc., is omitted. Fur-
thermore, FBP does not define the implementation (array,
shared memory queue, TCP connection etc.) of the arcs
but only their (FIFO) semantics. The result is execution in-
frastructure independence. Accompanied by the clear struc-
tural decomposition of the algorithms into small context-free
tasks (operators), this allows the runtime system to exploit
pipeline and data parallelism on any distributed architecture
(i.e. multi-core, cluster, WAN etc.).

Implementing reconfiguration support into a runtime that
executes highly concurrent programs requires 1) knowledge
about who exactly accesses the component to be altered and
2) a mechanism to fit this operation into the execution sched-
ule. Knowledge about the interactions of the operators is
provided by the explicit nature of the flow graph. The lat-
ter aspect is subject of our runtime extension framework.

3. OHUA SIMPLIFIED
Ohua is our implementation of an advanced data flow exe-

cution engine which strictly adheres to the above principles.
Operators are implemented as classes in Java while the spec-
ification of the flow graph is given in XML. At runtime this
specification is passed to the Java-based execution engine
which instantiates the listed operators and connects them
via arcs. Execution happens in three phases: initialization,
computation and shutdown. During initialization all opera-
tors are required to claim all resources such as I/O connec-
tions or build the internal data structures that they need to
perform their computation. Only when all operators suc-
cessfully finished this process, computation starts. Respec-

2We constrain ourselves to acyclic graphs for reasons of sim-
plicity and space limitations of the paper. FBP though does
not define any restrictions on the graph structure.

Operator

Operator Algorithm

Core State Machine

Ohua Engine

Operator Author

Adapter

Runtime Feature

Incoming Arc
Outgoing

Arc

Port HandlerPort HandlerPort Handler
Port HandlerPort HandlerPort Handler

Figure 2: Anatomy of an Ohua operator.

tively, the shutdown phase triggers a coordinated resource
release across the flow graph. Ohua has many advanced ca-
pabilities, but for this paper we use a simplified execution
model also known from other dataflow-like implementations
[22] which allows us to continue focusing on the construction
of our runtime extension framework. In this simplified ver-
sion, each operator of the submitted flow graph executes on a
single thread. It accounts that an operator is never executed
by more than one thread but all operators can execute con-
currently. Arcs are implemented via blocking queues, that
block either the enqueue or dequeue operation on a full or
empty queue, respectively. Executing each operator on its
own thread imposes the maximum amount of concurrency
into the flow graph and therewith does not restrict our run-
time extension framework to any specific concurrent execu-
tion setting. Since the following algorithms are implemented
on the FBP abstraction of a data flow graph, any execution
model is supported.

4. ADVANCED FBP CONCEPTS
The main extension point in FBP is an operator. In the

following section, we introduce new extension points along
the FBP guidelines of sequential code and execution context
independence to enable easy implementation of new runtime
features, such as online operator reconfiguration.

4.1 Runtime Extension Framework
The development process of a specific flow graph is guided

by looking at the specific functionality that is implemented
by each of the operators. Respectively, a runtime extension
framework that is supposed to enhance capabilities of all
existing and future operators needs to treat them primarily
as black boxes. Furthermore, the framework needs to be
independent of any specific flow graph structure in order to
apply for any existing or future flow graphs. In order to
accomplish both of these goals, we introduce concepts that
lend themselves towards the concepts of mixin inheritance
and runtime polymorphism.

4.1.1 Operator Internals
Figure 2 provides an in-depth view on the internal struc-

ture of an operator in Ohua. There exist two layers: 1) the
engine layer and 2) the operator author layer. The engine
part of an operator is provided by the Ohua execution engine
for every operator and consists of the core and a state ma-
chine. The latter is a vital part in more advanced execution
scenarios to realize cooperative operator scheduling. In our
basic execution model it keeps track of whether the opera-
tor is in initialization, computation or shutdown state with
respect to the execution phases. The core part incorporates
and controls the operator structure such as input and output

ports as well as the associated services to retrieve and emit
data packets. An adapter hides these internals and provides
access to these well-defined services for the specific operator
algorithm implementation as provided by the operator au-
thor. As a result, whenever the operator algorithm interacts
with its ports to retrieve or emit data, it gives control back
to the engine part of the operator. This is an essential as-
pect that makes the following extensions possible. Finally,
an operator algorithm defines a set of properties that are
assigned at data flow design time and used by the operator
algorithm at runtime. For example, the list of headers to be
used for HTTP response creation are supplied to the Write
operator of our web server flow graph from Figure 1 as part
of the XML flow graph description.

4.1.2 Operator Mixins
Up to this point, the operator structure resembles to known

FBP. The port handlers introduce the concept of mixin-style
inheritance to operators as they introduce new functional-
ity by treating them mainly as black boxes. They have full
knowledge of the operator structure but do not have the pos-
sibility to change it. Neither do port handlers have access
to the state machine of the operator. However, port han-
dlers do have full access to the operator algorithm including
making changes to it. Operators inherit the functionality of
port handlers by exposing an event notification mechanism
for packet arrival and emission. A port handler registers
for the events it is interested in and gets called by the op-
erator core whenever such an event has occurred. During
such a notification the port handler additionally has access
to the packet that triggered the event. Note, that the code
of a port handler is just an extension of the operator func-
tionality and as such is purely sequential by FBP design.
Whenever the operator algorithm retrieves the next packet
from an input port, the registered port handlers run first be-
fore the core returns the packet to the operator algorithm.
Similarly, on packet emission the registered packets are no-
tified before the operator core enqueues the packet into the
outgoing arc. Ohua does not set a limit on the number of
port handlers per port. Port handlers on the same port
are typically independent of each other and are executed in
the order in which they are mixed into the operators during
flow graph initialization. During this initialization process,
a port handler is created and registered to each operator.
While one port handler can register for many events from
input and output ports, it remains operator local in order
to adhere to the context-free nature of FBP operators.

4.1.3 Packet Dispatch
The port handler concept is implemented as a visitor pat-

tern on the packets. This is similar to the concept of pattern
matching in Actors as found in languages such as Erlang or
Scala. A port handler implements the interface methods for
the packet types it is interested in. Therefore, Ohua ex-
tends the classical packet concept in FBP by differentiating
between two types of packets:

• Data packets are instantiated and interpreted at the
operator author layer and contain data records belong-
ing to the program of the data flow graph.

• Meta-data packets are instantiated and interpreted at
the engine and runtime feature layer and contain meta
information of the current execution.

Runtime Graph

 Program Graph

Flow
Control Entrance Exit Flow

Shutdown

Operator
network

Request
API

Figure 3: Runtime representation of a submitted data flow
graph.

An example of a meta-data packet is the end-of-stream (EOS)
packet responsible for signalling the coordinated shutdown
of the flow graph. Meta-data packets use the existing ab-
straction of the data flow graph and travel along the defined
arcs. Meta-data packets are never dispatched to an operator
algorithm. However, port handlers are allowed to register
for the arrival of both, data as well as meta-data packets.
Routing of the meta-data packets is the responsibility of the
associated port handlers. Routing of the data packets is
handled by the operator algorithms.

4.1.4 Overlay Network Algorithms
Respectively, the design of a new runtime feature consists

of at least one new type of port handler and a new type of
meta-data packet. The key observation at this point is that,
due to its abstract nature, a data flow graph can also be
viewed as a network of operator nodes in the sense of the
distributed computing community. Hence, a new runtime
feature consisting of a set of port handler objects deployed
on various nodes in the network of a data flow graph forms
an overlay network[11] as the handlers of a single runtime
feature only see the (meta-data) messages created by them-
selves plus other messages that they registered for at the
underlying network.

This powerful observation allows us to utilize algorithms
and concepts from the distributed systems community on
the Ohua runtime engine executing on a multi-core machine
or even a cluster thereof. Furthermore, we can now use the
seminal work of Lamport and Chandy[7] to reason about
the consistency of our program. This notion of consistency
is essential to our dynamic development framework in order
to solve the last problem of creating a mechanism to fit the
reconfiguration actions into the execution schedule without
sacrificing the consistency of the program state. The result
is that changes can be applied when they travel along the
arcs of the system in line with data flow and get applied as
a processing step inline with the computation.

4.2 Runtime Feature API
The final challenge is the interaction with the highly con-

current execution environment. For example, reconfigura-
tion requests for our dynamic development framework origi-
nate outside of the Ohua runtime engine. In order to become
a valid part of the execution, they have to be convert into
meta-data packets and become part of the data flow.

4.2.1 Runtime Components
We solve this problem the FBP way by extending the

concept of operators and ports. Ohua differentiates between
two types of components (for operators and ports):

• A program component is defined by the author of the
data flow graph resembling the algorithm of the pro-
gram.

• A runtime component is part of the Ohua runtime sys-
tem and not part of the available operator suite for
algorithm construction.

Note that the execution model does perform this differentia-
tion and respectively runtime operators are executed just as
program operators are. Before execution starts, Ohua per-
forms a graph rewrite as depicted in Figure 3 that creates a
runtime graph composed of all runtime operators. The En-
trance operator provides a central entry for meta-data that
originates outside of the Program Graph. It is connected to
runtime ports on all source operators. On every interaction
of an operator algorithm with the core of a source operator,
the runtime port is checked for new data. Similarly, the Exit
operator creates a central exit for meta-data results. Finally,
the Flow Control operator provides a general (non-blocking)
API not only to steer the execution by submitting a ”start
computation” or ”finish computation” request as depicted in
Listing 1 but to submit arbitrary requests to an executing
data flow.

Listing 1: Ohua’s Flow Graph Execution Management API

1 OhuaProcessRunner runner = new
OhuaProcessRunner(”web−server−graph.xml”);

2 runner.submit(new Request(Type.INITIALIZE));
3 runner.submit(new Request(Type.START_COMPUTE));
4 // do something else here
5 runner.submit(new Request(Type.FINISH_COMPUTE));
6 runner.submit(new Request(Type.SHUTDOWN));

These requests are converted into meta-data packets and
forwarded to the Entrance to enter the data flow. There-
with, requests become valid parts of the data flow execution
without the necessity of invasive interruption code or ad-
ditional synchronization techniques. Therefore, all further
injection of meta-data packets into the flow graph happen
in accordance with the semantics of the data flow graph ab-
straction. Respectively, the Flow Shutdown operator waits
to receive the EOS packets from all the target operators.
The Ohua engine now can easily determine when processing
has finished and a coordinated flow graph shutdown can be
initiated by just waiting for the Process Shutdown opera-
tor to (receive the EOS packet and) finish its computation.
Once more, no additional synchronization, coordination or
interruption code is required.

5. ONLINE RECONFIGURATION
Based on these concepts, we extend the runtime to allow

reconfiguration of operator properties and even exchange of
operators, online.

5.1 Overlay Network Implementation
Our runtime feature is composed of a new port handler

and a corresponding configuration meta-data packet, to carry

the reconfiguration information to the target. The class im-
plementation of this new message is given in Listing 23.

Listing 2: Reconfiguration meta-data packet.

1 class ReconfigMsg implements MetaDataPacket{
2 enum Category{ PROPERTY, OPERATOR}
3 String _targetOp, _propertyRef = null;
4 Object _reconfigValue = null;
5 Category _category = null;
6 }

The meta-data packet requires to specify whether the re-
configuration request addresses a property or an operator
exchange along with references to identify the targeted op-
erator and property. Finally, it carries the updated property
or operator algorithm implementation. These packets are
interpreted by the according port handler of Listing 3.

Listing 3: Reconfiguration port handler.

1 class ReconfigHandler implements PacketHandler{
2 void notifyArrival(InputPort port, ReconfigMsg

packet) {
3 Operator op = port.getOwner();
4 if(!op.getName().equals(packet._targetOp)){
5 // propagate via broadcast
6 for(OutputPort out : op.getOutputPorts()){
7 out.emit(packet);}
8 }else{
9 switch(packet._category) {

10 case PROPERTY:
11 // update the property via reflection
12 RelectionUtils.updateProperty(packet.

_propertyRef, op, packet._reconfigValue);
13 break;
14 case OPERATOR:
15 // initialize and exchange the operator algorithm
16 OperatorAlg newAlg = packet._reconfigValue;
17 newAlg.init();
18 op.setAlgorithm(newAlg);}}}
19 }

The port handler is only interested in the packets of the re-
configuration overlay and therefore an instance of it is mixed
into the functionality of each operator in the flow graph dur-
ing initialization. Whenever a configuration packet arrives
at an operator, the configuration handler checks whether
the operator is the target of this configuration. If so then
it either updates the property of an operator algorithm via
reflection on the class hierarchy or exchanges the operator
algorithm entirely. Otherwise, the configuration packet is
broadcasted to all downstream neighbours. If a request was
handled or the marker reaches the Exit, it is dropped. Hence,
the reconfiguration algorithm itself makes no assumptions
on the graph structure or operator implementation and is
therewith applicable to any data flow graph and any opera-
tor.

5.2 API
Finally, reconfiguration requests are issued from outside

the Ohua execution engine. Therefore, no specific system
operators are required but instead the request API is used

3We omit visibility quantifiers in our code listings for brevity
reasons.

to convert change requests into meta-data packets and inject
them into the flow graph.

5.2.1 Property Update Request
Listing 4 shows an example for redefining the headers that

the HTTP response of our web server contains. The new
map of headers is wrapped into a packet and finally submit-
ted to the data flow graph. The packet contains the identi-
fier of the target operator for this packet and a reference to
the operator property to be reconfigured. Once the packet
reached the Write operator, the according port handler ap-
plies the property via reflection and drops the packet.

Listing 4: Reconfiguration request for the response headers.

1 ReconfigMsg packet = new ReconfigMsg();
2 packet._category = ReconfigMsg.PROPERTY;
3 packet._targetOp = ”Write”;
4 packet._propertyRef = ”properties.headers”;
5 packet._reconfigValue = Collections.singletonMap

(”From”, ”sebastian@ohua.com”);
6 runner.submit(new Request(Type.FLOW_INPUT,

packet);

5.2.2 Operator Exchange Request
During processing, there might be many reasons why an

operator algorithm wants to be exchanged, for example a
faster implementation is available or a bug was fixed. List-
ing 5 exchanges the file-based Load with a database Load
operator in order to improve request latency by removing
disk seek times and benefiting from index structures and
caching of the database system.

Listing 5: Exchanging the file with a DB load operator.

1 ReconfigMsg packet = new ReconfigMsg();
2 packet._category = ReconfigMsg.OPERATOR;
3 packet._targetOp = ”Load”;
4 packet._reconfigValue = new

DatabaseLoadOperator(”jdbc:derby://localhost
:1527:/http”);

5 runner.submit(new Request(Type.FLOW_INPUT,
packet);

The exchange functionality is limited to the operator struc-
ture, i.e. the new operator algorithm most adhere to the
operator structure. For example, the Load operator exposes
only one input port and therefore can not be exchanged with
an operator algorithm requiring two or more input ports.
Note, the operator exchange as portrayed in the above pro-
gram code is not applicable to allow the exchange of oper-
ators that might be located on different physical nodes in
a cluster. But a reflection-based implementation is straight
forward and therefore omitted for clarity reasons.

6. RELATED WORK
A detailed summary on dataflow languages is given in

[18]. Yet, none of these languages nor current state-of-the-
art such as Kilim[23] or StreamIt[24] provide a runtime ex-
tension concept that allows to dynamically exchange prop-
erties or operators. In [24] the authors of the StreamIt com-
piler briefly mention a re-initialization mechanism for oper-
ators (called filters in StreamIt) and parts of a flow graph
that is incorporated with the messaging system but omit

any more details. Meta components (such as Ohua’s system
components) are common constructs in flow-based program-
ming[20]. Yet, we are unaware of an FBP system that in-
troduces the dynamic component change concepts of Ohua
to enable online evolution of highly concurrent programs.

Actors and mixin inheritance are known concepts and
have recently gained popularity due to their implementa-
tion in the Scala programming language[14]. Actors and
the message-passing programming model is known from Er-
lang[4]. Erlang also allows to send new functions via mes-
sages to processes which can then perform the code ex-
change. This model most closely resembles our online re-
configuration feature. However, Erlang requires each pro-
cess that needs this capability to implement it on its own.
In Ohua it is a runtime feature which is implemented once
and inherited by all operators. Clojure[15] also supports
dynamic development but we were unable to find a detailed
explanation on whether exchanging functions during highly
concurrent execution of a program is possible. Scripting
languages such as Perl, Python and JavaScript also provide
features to exchange functions and operators at runtime but
were not designed to execute programs concurrently.

7. CONCLUSION AND FUTURE WORK
In this paper, we addressed the problem of interfacing

and exchanging parts of highly concurrent programs, online.
Therefore, we introduced a runtime extension framework for
languages based on the abstract principles of dataflow and
flow-based programming as a promising paradigm for future
multi-core programming. We showed that mixin-style in-
heritance to enhance any operator with new functionality
in combination with actor-like message dispatching support
allows for easy implementation of new runtime features as
an overlay network over any data flow graph. Our graph
rewrite allows not only for these extensions to introduce
their own operators but to become a natural part of the
whole runtime system. On the basis of these concepts, we
have shown the implementation of our online reconfiguration
runtime feature, which allows to update operator properties
or even complete operator algorithms at runtime, as a first
step towards dynamic development capabilities. Our goal is
to evolve this runtime feature to handle stateful operators
and support dynamic development of the whole flow graph.

8. REFERENCES
[1] Apache, apache http version 2.2, documentation,

stopping and restarting.
http://httpd.apache.org/docs/2.2/stopping.html.

[2] Noflow, flow-based programming for node.js.
http://noflojs.org/.

[3] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack,
C. Convey, C. Erwin, E. Galvez, M. Hatoun,
A. Maskey, A. Rasin, A. Singer, M. Stonebraker,
N. Tatbul, Y. Xing, R. Yan, and S. Zdonik. Aurora: a
data stream management system. SIGMOD. ACM,
2003.

[4] J. Armstrong. The development of erlang. ICFP.
ACM, 1997.

[5] Arvind and D. E. Culler. Annual review of computer
science vol. 1, 1986. chapter Dataflow architectures,
pages 225–253. Annual Reviews Inc., Palo Alto, CA,
USA, 1986.

[6] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A.
Shah. Telegraphcq: continuous dataflow processing.
SIGMOD. ACM, 2003.

[7] K. M. Chandy and L. Lamport. Distributed
snapshots: determining global states of distributed
systems. ACM Trans. Comput. Syst., 1985.

[8] A. A. Chien. Pervasive parallel computing: an historic
opportunity for innovation in programming and
architecture. PPoPP. ACM, 2007.

[9] J. B. Dennis. Data flow supercomputers. Computer,
13(11):48–56, Nov. 1980.

[10] D. J. DeWitt, R. H. Gerber, G. Graefe, M. L.
Heytens, K. B. Kumar, and M. Muralikrishna.
Gamma - a high performance dataflow database
machine. In VLDB, 1986.

[11] D. Doval and D. O’Mahony. Overlay networks: A
scalable alternative for p2p. Internet Computing,
IEEE, 7(4):79–82, 2003.

[12] N. Feng, G. Ao, T. White, and B. Pagurek. Dynamic
evolution of network management software by
software hot-swapping. In Integrated Network
Management Proceedings, 2001 IEEE/IFIP
International Symposium on, pages 63–76, 2001.

[13] G. Graefe. Encapsulation of parallelism in the volcano
query processing system. SIGMOD. ACM, 1990.

[14] P. Haller and M. Odersky. Scala actors: Unifying
thread-based and event-based programming. Theor.
Comput. Sci., 2009.

[15] R. Hickey. The clojure programming language. DLS.
ACM, 2008.

[16] IBM. Infosphere streams. http://www-01.ibm.com/
software/data/infosphere/streams/.

[17] IBM. Infosphere datastage data flow and job design.
http://www.redbooks.ibm.com/, July 2008.

[18] W. M. Johnston, J. R. P. Hanna, and R. J. Millar.
Advances in dataflow programming languages. ACM
Comput. Surv., 36(1):1–34, Mar. 2004.

[19] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing declarative
overlays. SOSP. ACM, 2005.

[20] J. P. Morrison. Flow-Based Programming. Nostrand
Reinhold, 1994.

[21] M. E. Segal and O. Frieder. On-the-fly program
modification: Systems for dynamic updating. IEEE
Softw., 10(2):53–65, Mar. 1993.

[22] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek.
Streamflex: high-throughput stream programming in
java. OOPSLA. ACM, 2007.

[23] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed
actors for java. ECOOP. Springer-Verlag, 2008.

[24] W. Thies, M. Karczmarek, and S. Amarasinghe.
Streamit: A language for streaming applications. CC,
2002.

[25] M. Welsh, D. Culler, and E. Brewer. Seda: an
architecture for well-conditioned, scalable internet
services. SOSP. ACM, 2001.

